bck

收藏本站

甲烷重整热化学储能过程催化反应及传输特性

【摘要】:太阳能是一种清洁、丰富的可再生能源,合理高效利用太阳能能够缓解我国不合理的能源消费结构以及能源短缺现象,并大幅度减小我国对外能源依存程度。由于太阳能具有间歇性和不稳定性等特点,很难满足规模化连续稳定供能的要求,因此必须发展高效储能技术以保证太阳能的高效稳定利用。现有太阳能高温储能主要采用显热和相变储能方法,其储能密度相对较低,且高温热能在常温下无法做到长期储存。热化学储能是太阳能高温储能的新型技术,具有重要的研究意义和应用前景。 CO_2/CH_4重整热化学储能的储能特性引起了国际社会广泛关注,该储能过程能够将低能量密度、间歇性和不稳定的太阳能转化为稳定化学燃烧能,且CO_2/CH_4重整热化学储能反应工况为高温环境,该储能特性有效填补太阳能热利用高温储能蓄热(600oC)的空缺,CO_2/CH_4重整储能有效提高了稳定燃料化学能的焓值,焓值提升幅度为23.6%,根据“温度对口、梯级利用”的能量利用理念,CO_2/CH_4重整热化学储能有效提高了能的品位,将低品位的能量转换为可以用于直接发电的高品位能,并能实现能的异时空使用,实现了能的主动调控蓄能;同时,CO_2/CH_4重整热化学储能过程在实现对太阳能的收集-存储-再利用的过程中,能充分利用CO_2及CH_4两种温室气体制造氢能,在完成可再生能源规模化利用的同时,实现了稳定燃料化学能的主动调控蓄能,以及节能减排多重作用,因此CO_2/CH_4热化学储能具有非常广阔的应用前景。 热化学储能过程是一多相多场共存与转化的复杂热流体系反应动力学过程,而热化学反应储能过程的催化机制则是储能技术实用化之关键。与普通CO_2/CH_4重整反应工况不同,热化学储能过程需要以高效储能效率为前提,这要求CO_2/CH_4重整热化学储能在高温环境下进行。而反应过程必须需要催化剂进行催化,因此对催化剂要求极高,普通甲烷重整反应催化剂难以适应符合太阳能高温反应条件的苛刻要求,需要研制适合耐高温催化性能良好的催化剂。本文运用化学反应工程的观点和方法,以CO_2/CH_4重整热化学储能反应体系为研究对象,研究了CO_2/CH_4重整热化学储能过程的反应原理,着重分析了由太阳能向稳定燃烧化学能转化的过程,通过研究CO_2/CH_4重整热化学储能过程的反应工况,制备重整储能过程催化剂并探讨了影响催化稳定活性的相关因素及机理,并且设计了基于碳酸熔融盐高温传热-蓄热平台为原型的模拟太阳能塔式热发电电站的CO_2/CH_4重整储能的管壳式重整储能反应器的数值模型,解决了影响储能过程效率的反应器结构参数及反应操作条件的变化规律及趋势。此外,本文对管壳式重整反应器的研究进行了部分延伸,设计了有序填充床反应器数值模型,通过探讨反应器内部的热质传递等规律,分析影响反应器管内影响热质传递规律的因素。。 本文首先提出了CO_2/CH_4重整储能反应理论,根据CO_2/CH_4重整储能反应特性进行理论分析,提出满足高效储能效率的反应条件。研究表明:重整反应条件为CO_2/CH_4=1,T=800°C,常压操作时,CO_2/CH_4重整储能具有最佳的储能效率,此时,CO_2/CH_4重整储能体系中主反应的反应程度高于90%,且副反应产生的表面积炭也维持相当低的水平。 为了解决CO_2/CH_4重整储能过程稳定性及机理等关键科学问题,本文设计并制备了高效稳定的催化剂,详细探讨该类催化剂在高温持续稳定的续航能力,以及稳定性机理及预测其使用寿命。研究表明,采用正交实验优化的Pt-Ru/γ-Al_2O_3催化剂,其高温稳定续航能力优秀,可在800°C下持续反应500h后保持与新鲜催化剂不变的催化性能;通过稳定性及催化剂表面积炭研究,得出Pt-Ru/γ-Al_2O_3不仅能提高催化剂抗烧结能力,还能改善活性组分Pt在富CO反应体系的毒化情况和Ru在高温富氧环境的被氧化情况;同时,研究表明,随着反应时间的增加,催化剂表面覆盖的部分毒化C种类会向活性炭种类转化,催化剂表面积炭类型主要是具有一定活性的C种类。因此,通过实验研究,本课题选择的Pt-Ru/γ-Al_2O_3催化剂能够满足高能流密度、高储能温度工况下的CO_2/CH_4热化学储能持续稳定工作的工艺条件,同时还能保持高效的储能效率,达到了实验设定目的。 基于CO_2/CH_4重整储能过程的实际应用领域,本文设计了基于碳酸熔融盐高温传热-蓄热平台为原型的模拟太阳能塔式热发电电站的CO_2/CH_4重整储能的管壳式重整储能反应器的数值模型,解决了影响储能过程效率的反应器结构参数及反应操作条件的变化规律及趋势,研究表明,在蓄热反应过程中,蓄热反应器管长越长、直径越短,管内催化剂床层高度越厚,催化剂活化能越小,越有利于提高蓄热储能效率;另外,反应雷诺数越低,操作压力越小,甲烷进口摩尔分率越小,壁温与进口温度越高,越有利于甲烷转化率的提高,从而提高蓄热储能效率。此外,该数值模型还解决了CO_2/CH_4重整储能体系现有研究阶段微观热质传递机理不清晰的难题。 本文基于管壳式重整储能反应器固定床反应器模型,设计了几种管内催化剂颗粒有序堆积方式,通过研究反应器内部不同堆积方式的热质传递等规律,探讨了影响反应器管内影响热质传递规律的因素。研究表明,在大多数雷诺数范围内,管内N=2.16堆积方式最有利于提高传热速率。考察了床层堆积方式对局部流场的影响规律,得出床层内的阻力特性主要受催化剂形体阻力控制。耦合CO_2/CH_4吸热重整反应后,研究了堆积方式对催化剂单位面积转化率的影响,得出N=2.16堆积方式转化率最高,管内球表面温度的变化规律符合反应宏观规律,说明催化剂床层采用N=2.16的有序堆积方式,能够有效的提高管内传热速率,并能增加储能蓄热效率。 本文基于CO_2/CH_4重整热化学储能研究了该储能过程的反应原理,分析了由太阳能向稳定燃烧化学能转化的过程,研究了CO_2/CH_4重整热化学储能过程的反应工况,制备了重整储能过程催化剂并探讨了影响催化稳定活性的相关因素及机理,并且设计了基于碳酸熔融盐高温传热-蓄热平台为原型的模拟太阳能塔式热发电电站的CO_2/CH_4重整储能的管壳式重整储能反应器的数值模型,解决了影响储能过程效率的反应器结构参数及反应操作条件的变化规律及趋势。本文还基于管壳式重整储能反应器固定床反应器模型,设计了有序填充床反应器数值模型,通过探讨反应器内部的热质传递等规律,分析了影响反应器管内影响热质传递规律的因素。

下载App查看全文

(如何获取全文? 欢迎:、、)

支持CAJ、PDF文件格式


【相似文献】
中国期刊全文数据库 前20条
1 杨先春;;激光喇曼光谱原位法研究硫化态催化剂 Ⅱ.硫化态W/γ-A1_2O_3催化剂的活性组分的化学形态及其表面光谱特性[J];石油学报;1987年04期
2 高崇;罗忠禹;王树清;魏奇业;;提高国产中变催化剂内表面利用率的途径[J];吉林化工学院学报;1991年02期
3 龙晓达;催化剂的异地预硫化处理[J];石油与天然气化工;1992年03期
4 徐浩东;宁平;王学谦;;催化氧化净化黄磷尾气中PH_3[J];云南化工;2007年01期
5 赵永才;郑重;;VOCs催化燃烧技术及其应用[J];现代涂料与涂装;2007年11期
6 王润平;毛树红;池永庆;段秀琴;刘军;;费托合成铁基催化剂助剂的研究概述[J];天津化工;2008年01期
7 朱想明;向建敏;;甲醇裂解催化剂失活与再生[J];大众科技;2008年06期
8 王红妍;易红宏;唐晓龙;于丽丽;;羰基硫脱除技术研究现状及进展[J];化学工业与工程;2010年01期
9 黄赛棠;X光电子能谱(XPS)的某些应用[J];化学世界;1982年06期
10 张家明;;NZP—1型催化剂应用于催化燃烧法处理有机废气[J];今日科技;1982年04期
11 惠从善;陈延祥;锺承德;郑家倬;王燮昌;张君;;铁酸盐催化剂丁烯-2氧化脱氢反应动力学[J];石油化工;1984年05期
12 赵树斌;;滴流床反应器中α-甲基苯乙烯催化加氢反应规律探讨[J];石油化工;1985年01期
13 刘新华;林振锟;任韶玲;庞礼;;脉冲热重差热法研究三种工业镍催化剂上一氧化碳甲烷化反应[J];内蒙古大学学报(自然科学版);1986年04期
14 陈实;朱起明;刘殿求;杨光华;;低压合成甲醇Cu/ZnO/Al_2O_3催化剂的表面表征与二氧化碳作用的研究[J];石油学报(石油加工);1987年04期
15 陈实;朱起明;刘殿求;杨光华;;低压合成甲醇Cu/ZnO/Al_2O_3催化剂的表面表征与二氧化碳作用的研究[J];石油学报;1987年04期
16 韩维屏;王潍平;欧阳峰;;Cs~+与P_2O_5对V_2O_5-TiO_2催化剂的协同作用[J];石油学报(石油加工);1990年03期
17 李瑞丰;马静红;徐文旸;杨晋安;;硅沸石晶体形貌对负载催化剂性能的影响[J];太原理工大学学报;1990年02期
18 邓向阳,刘旦初;用于催化剂研究的多功能动态分析装置[J];复旦学报(自然科学版);1991年04期
19 瞿国华;;加氢裂化装置精制反应器压力降飞升的原因分析及其解决途径[J];金山油化纤;1991年01期
20 徐佩若,N.D.班卡拉,吴指南,伍肇炯;碳四烃在改性HZSM-5分子筛上芳构化研究[J];燃料化学学报;1993年02期
中国重要会议论文全文数据库 前10条
1 许韵华;晋丽叶;陈敏;王永生;朱红;;质子交换膜燃料电池抗CO催化剂PtRu/C的研究[A];可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册)[C];2005年
2 盖帅;徐永强;刘晨光;;硅胶键合有机磺酸催化剂的制备与表征[A];中国石油学会第六届石油炼制学术年会论文集[C];2010年
3 蒋树斌;;污染物治理技术进展[A];中国工程物理研究院科技年报(2010年版)[C];2011年
4 庞新梅;钱锦华;高雄厚;;渣油催化裂化催化剂技术最新进展[A];甘肃省化学会成立六十周年学术报告会暨二十三届年会论文集[C];2003年
5 李林;王晓东;王爱琴;张万生;张涛;;Mo_2C催化剂的吸附量热研究[A];中国化学会第十三届全国化学热力学和热分析学术会议论文摘要集[C];2006年
6 靳凤英;王祥生;袁景利;龙化云;杨晓宇;陈立东;郭新闻;;有机酸改性的CoMo/HZSM-5催化剂的加氢脱硫活性[A];第十五届全国分子筛学术大会论文集[C];2009年
7 安立敦;;负载型纳米金催化剂投入工业生产[A];第七届全国工业催化技术及应用年会论文集[C];2010年
8 周晓奇;;加氢脱硫催化剂及其新进展[A];第三届全国工业催化技术及应用年会论文集[C];2006年
9 杨勇;杜阳;王和义;;无机载体疏水催化剂研制[A];中国工程物理研究院科技年报(2008年版)[C];2009年
10 欧阳平;姚金华;陈国需;李华峰;;摩擦催化反应中机械摩擦作用对催化剂的影响[A];第四届全国工业催化技术及应用年会论文集[C];2007年
中国博士学位论文全文数据库 前10条
1 杜娟;甲烷重整热化学储能过程催化反应及传输特性[D];华南理工大学;2013年
2 卢文新;纳米碳纤维生长速率及形态调控[D];华东理工大学;2010年
3 褚睿智;微波辐射下耐硫型Pd催化剂的可控制备及在一步法合成二甲醚中的应用[D];中国矿业大学;2010年
4 黄辉;脂肪酸甲酯加氢制脂肪醇Cu/Zn催化剂的失活机理研究[D];华东理工大学;2011年
5 王文举;Ni催化剂催化乙醇重整制氢的研究[D];天津大学;2009年
6 陈鸿庆;乙醇重整制氢Ir-La催化剂设计及微反性能优化[D];华南理工大学;2010年
7 姜烨;钛基SCR催化剂及其钾、铅中毒机理研究[D];浙江大学;2010年
8 张安杰;Ni基催化剂上甲烷二氧化碳重整制合成气的研究[D];大连理工大学;2011年
9 丁保宏;新型载体SiO_2-TiO_2-ZrO_2载负MoP催化剂的制备、表征及加氢精制性能[D];华东师范大学;2011年
10 滕阳;硫化后还原法制备磷化物催化剂及其加氢脱硫反应性能[D];大连理工大学;2010年
中国硕士学位论文全文数据库 前10条
1 李正启;橡胶防老剂4020合成工艺的研究[D];华东理工大学;2012年
2 杨燕萍;Ni/TiO_2-SiO_2催化剂的制备、表征及顺酐加氢性能研究[D];山西大学;2011年
3 彭神风;烟气脱硝SCR催化剂的性能研究[D];华东理工大学;2012年
4 刘树森;甲醇液相氧化羰基化Cu-Si-Ti基催化剂的研究[D];太原理工大学;2010年
5 庄永涛;柴油车尾气净化蜂窝状Fe-Mo/ZSM-5催化剂的试验研究[D];太原理工大学;2010年
6 刘艳霞;纳米金催化剂室温氧化CO及其再生研究[D];大连理工大学;2011年
7 王光伟;改性蒙脱土负载Co催化剂的费—托合成反应行为[D];陕西师范大学;2011年
8 王莉萍;焦炉煤气钌甲烷化催化剂的制备及研究[D];太原理工大学;2010年
9 张晓伟;化学镀制备Co基催化剂及其催化硼氢化钠水解制氢的研究[D];南开大学;2010年
10 杨晓楠;超重力共沉淀法制备铜基甲醇合成催化剂及其性能表征[D];北京化工大学;2010年
中国重要报纸全文数据库 前10条
1 赵亚辉;[N];人民日报;2004年
2 记者应庆;[N];中国医药报;2005年
3 记者 王岚;[N];宁波日报;2010年
4 苛卫;[N];中国石油报;2003年
5 本报记者 张佳星;[N];科技日报;2007年
6 记者 吴苡婷;[N];上海科技报;2011年
7 潘治;[N];新华每日电讯;2007年
8 ;[N];中国高新技术产业导报;2001年
9 刘文;[N];中国矿业报;2005年
10 本报记者 张震;[N];中国消费者报;2005年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978


{bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck体育下载}| {bckbet}| {bcksports}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bck官网}| {bck体育下载}| {bckbet}| {bcksports}| {bck官网}| {bck体育app}| {bck体育}| {bcksports}| {bck官网}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck体育}| {bcksports}| {bck官网}| {bck体育官网}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bck官网}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bcksports}| {bck官网}| {bck}| {bck体育官网}| {bcksports}| {bck体育下载}| {bck体育app}| {bckbet}|
{uc8}| {uc8体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐城}| {uc8彩票}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {uc8体育}| {UC体育}| {uc8老虎机}| {uc8老虎机}| {UC8娱乐}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8老虎机}| {uc8彩票}| {uc8}| {uc8体育}| {UC体育}| {uc8官网}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {uc8彩票}| {uc8}| {uc体育}| {UC体育}| {UC8娱乐城}| {uc8}| {UC体育}| {uc8官网}| {uc8老虎机}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}|