bck

收藏本站

小麦耐盐渐渗系山融3号根系盐胁迫转录组分析及相关基因功能研究

【摘要】: 植物的耐盐性是由多基因控制的复杂性状,盐胁迫应答基因涉及代谢、防御反应、能量、离子平衡和物质转运等诸多方面。深入理解控制这个性状的分子机制,有助于农作物的基因改良从而减少盐害带来的损失。对盐胁迫下植物转录组整体水平上的研究对于耐盐机理的揭示具有重要意义。目前对模式植物拟南芥和水稻盐胁迫下转录组变化研究取得了许多进展,而对非模式植物如小麦的研究较少。 山融3号是从普通小麦济南177(Triticum aestivum L.2n=42)与其耐盐近缘属长穗偃麦草(Thinopyrum ponticum 2n=70)不对称体细胞融合杂种中筛选出来的耐盐渐渗系新品种。遗传和生理生化分析表明山融3号基因组中含有渐渗的长穗偃麦草基因组小片段,其耐盐指数及各项耐盐生理指标均优于其亲本,且其耐盐性状由一个主效基因位点和多个微效基因位点共同控制。 本论文设计了山融3号原位合成长oligo表达谱芯片,包含15000个unigene,将之用于研究盐胁迫和渗透势相当的PEG(polyethylen glycol)胁迫下山融3号及其亲本济南177根部转录组的变化情况,通过对芯片杂交结果的分析,系统性的阐明了山融3号耐逆可能涉及的途径,还对盐胁迫早期渗透胁迫与离子胁迫对转录组影响的关系进行了探讨;在此基础上,进一步着重研究了山融3号中克隆的4个盐胁迫响应基因,结合在拟南芥中过表达等多种手段,进行功能相关研究,指出了这些基因在山融3号中参与耐逆调控的可能方式。 主要的研究内容及结果包括: 1.山融3号表达谱芯片的设计 山融3号的来源与遗传背景特殊,其中有别于普通小麦的转录子可能对耐盐性状有着重要贡献,为了将这些转录子囊括于芯片分析的范围之内,首先构建了山融3号和济南177根部盐胁迫下的SSH cDNA文库,将文库测序得到的1000个EST序列聚类成180个unigene、连同山融3号全长cDNA文库EST序列聚类而成的2539个unigene、并整合DFCI小麦数据库中的unigene资源,设计了代表山融3号15000个unigene的原位合成长oligo表达谱芯片。 2.山融3号及其亲本济南177根部盐胁迫转录组变化差异的分析 利用上述芯片研究了山融3号及其亲本济南177在盐胁迫下不同时间点根转录组之间的差异,发现了836个具有显著性差异的探针,对这些差异基因的差异模式和功能的分析表明: 山融3号在金属离子、水分和营养元素的运输、抗氧化、类黄酮类合成、部分ABA途径基因、部分防御反应相关基因上具有表达优势,而表达显著下降的基因包括大量的光合作用相关基因以及部分防御反应基因; 对调控类基因(如转录因子和激素合成与代谢相关基因)和转运蛋白基因响应模式的分析发现,山融3号中盐胁迫下上调的探针数目更多,且上调程度更高,而盐胁迫下调探针的下调程度则较济南177中低,暗示山融3号的胁迫适应性反应强度提高,进而提高了胁迫耐受性;相对与济南177,JA(jasmonic acid)合成关键基因和GA(gibberellin)合成关键基因在山融3号中分别组成型的大幅度表达量降低和升高,暗示了两个品种中不同的激素平衡情况; 最后,总结了芯片中54个在两个品种间表达有差异且代表未知小麦EST的探针,这些EST序列均来源于山融3号自身,有可能是体细胞融合带来的外源基因或基因变异的产物。 以上发现有助于阐述山融3号的耐盐机理,并提供了许多潜在的耐盐候选基因,同时证明了体细胞融合对转录组的重大影响,以数据说明了该技术应用于耐盐品种培育的价值。 3.利用NaCl和PEG等渗处理研究盐胁迫早期响应机制 为了研究小麦根部对盐胁迫早期响应机制,并区分渗透胁迫与离子胁迫的关系,利用渗透势相当的NaCl和PEG对山融3号和济南177进行等渗胁迫处理,基于芯片杂交数据,分析了根部胁迫早期的转录组变化,发现: 盐胁迫早期响应以调控基因的上调和转运相关基因的下调为主; 等渗处理下盐胁迫和单纯渗透胁迫引发的转录组变化有很大一致性,但PEG胁迫引起了更大范围的转录组变化,同时调控类基因(转录因子和激素合成与代谢相关基因)对PEG胁迫的响应程度更大; 存在非渗透胁迫响应的盐胁迫响应探针,并且转运蛋白基因中在胁迫早期下调的探针在NaCl胁迫下比PEG胁迫下下调程度更大。 这些发现首次在转录组水平证明盐胁迫早期以渗透胁迫的影响为主,而离子胁迫的影响也同时存在。所筛出的差异探针也为研究早期盐胁迫信号传导和离子胁迫特异性信号传导提供了候选基因。 4.山融3号盐胁迫早期响应基因TaDi19A和TaDi19B的克隆与功能研究 基于对山融3号和济南177盐胁迫根部SSH文库表达差异筛选的结果,由EST片段克隆到山融3号TaDi19A和TaDi19B基因,它们都属于Di19(DROUGHTINDUCED19)基因家族。其中: TaDi19A定位于小麦3B染色体长臂,主要在细胞核中起作用,在非胁迫条件下小麦的根和叶中都有基本表达,在NaCl、PEG、冷以及非生物胁迫相关激素ABA和乙烯的处理下迅速上调表达;该基因在拟南芥中的组成型表达造成转基因植株在种子萌发阶段对盐胁迫、渗透胁迫以及ABA处理超敏感;转基因植株根的伸长实验表明植株盐耐受性降低且对乙烯的敏感性降低;在H_2O_2处理下,转基因植株的开花期比对照大大提前。另外,转基因拟南芥中ABA信号传导途径基因ABI1、RAB18、ERD15和ABF3,以及SOS(salt overly sensitive)途径基因SOS2的转录水平发生改变。因此,TaDi19A可能是作为胁迫信号传导的调控因子,通过改变这些基因的转录来对植物非生物胁迫及相关激素的响应产生影响。 对TaDi19B基因的序列特征、亚细胞定位、表达谱进行了研究,并建立了拟南芥组成型表达的转基因株系。发现它主要定位于细胞核,其表达受到盐、渗透胁迫和冷胁迫的诱导,并且在山融3号中的上调更明显,推测它可能对山融3号的高耐盐性有贡献,参与了盐等非生物胁迫的响应。 5.山融3号盐胁迫早期响应基因TaERD15A和TaERD15B初步的功能研究 同样基于SSH文库表达差异筛选的结果,从山融3号中克隆了TaFRD15A和TaERD15B基因,对它们的序列分析表明,这类基因编码的蛋白在各个物种中差异较大,保守性较差,其拟南芥同源基因ERD15是ABA途径负调控因子。对它们的基因结构、亚细胞定位、表达谱进行了分析,并分别获得了拟南芥组成型表达的转基因株系。 其中,TaERD15A位于小麦1A染色体短臂,蛋白在细胞内主要定位于细胞核,并且在盐胁迫和PEG造成的渗透胁迫下上调表达,且在济南177中的表达量更高,同时,它也受到低温胁迫的诱导,但不受ABA诱导。该基因在拟南芥中的组成型表达造成转基因植株的盐耐受性降低。这说明它可能是胁迫耐受性的负调控因子,并且通过非ABA依赖的途径起作用,而盐胁迫下该基因在山融3号中更低的表达量可能是山融3号更高盐耐受性的原因之一。 TaERD15B的亚细胞定位与TaERD15A类似,并同样受PEG和冷胁迫诱导,但是不受NaCl胁迫诱导,而在PEG处理带来的渗透胁迫下,该基因在济南177中的表达量高于山融3号,推测它可能主要参与渗透胁迫和冷胁迫的响应过程。

下载App查看全文

(如何获取全文? 欢迎:、、)

支持CAJ、PDF文件格式


【相似文献】
中国期刊全文数据库 前20条
1 郭秀璞,石晶,郭永新,黄向荣;渗透胁迫对小麦萌发生长及某些生理生化特性的影响[J];洛阳农业高等专科学校学报;1998年04期
2 魏宇昆,梁宗锁,李丽霞,韩蕊莲;抗氧化剂对渗透胁迫下沙棘叶片膜脂过氧化的保护作用[J];西北林学院学报;2001年01期
3 彭立新,李德全,束怀瑞;植物在渗透胁迫下的渗透调节作用[J];天津农业科学;2002年01期
4 谭新中,曹赐生,肖用森;维生素C对渗透胁迫下杂交稻幼苗膜脂过氧化作用的影响[J];杂交水稻;2003年03期
5 杨剑平,陈学珍,王文平,李杨;大豆实验室PEG_(6000)模拟干旱体系的建立[J];中国农学通报;2003年03期
6 王宪叶,沈文飚,徐朗莱;外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J];植物生理与分子生物学学报;2004年02期
7 高俊凤,文蓉;玉米幼苗对渗透胁迫的反应[J];干旱地区农业研究;1990年01期
8 李广敏,唐连顺,商振清,池书敏;渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J];河北农业大学学报;1994年02期
9 阎顺国;碱茅营养吸收对盐胁迫及渗透胁迫的反应[J];草业学报;1995年02期
10 蒋明义,郭绍川;渗透胁迫下稻苗中铁催化的膜脂过氧化作用[J];植物生理学报;1996年01期
11 路苹,汪沛洪;渗透胁迫下小麦种子萌发成苗与蛋白质变化的关系[J];北京农学院学报;1996年01期
12 李朝周;Co~(2+)对渗透胁迫下小麦幼苗叶片乙烯产生率及蛋白酶活性的影响[J];甘肃农业大学学报;1996年04期
13 苗龙,王学臣,张伟成;渗透胁迫引起玉米根冠处胞间连丝的ATP酶活性下降(英文)[J];Acta Botanica Sinica;1997年08期
14 陈立松,刘星辉;渗透胁迫下Ca~(2+)对龙眼叶片光合色素及膜脂过氧化的影响[J];园艺学报;1998年01期
15 李玲;百草枯和苯甲酸钠对渗透胁迫下抗旱性不同玉米品种愈伤组织的影响[J];植物生理学报;1998年04期
16 张士功,刘国栋,刘更另,肖世和;渗透胁迫和缺磷对小麦幼苗生长的影响[J];植物生理学通讯;2001年02期
17 余望;渗透胁迫对杧果叶片活性氧伤害的影响[J];亚热带植物科学;2002年01期
18 郑桂珍,关军锋,李广敏;渗透胁迫对小麦根、胚芽生长及其质膜氧化还原系统的影响[J];中国生态农业学报;2003年03期
19 陈因,方大惟;渗透胁迫下的蓝藻固氮作用[J];核农学报;1995年02期
20 蒋明义,郭绍川;渗透胁迫及光照下水稻幼苗叶片光合色素降解过程中 ~1O_2 的参与[J];植物学报;1996年10期
中国重要会议论文全文数据库 前10条
1 刘子会;郭秀林;马春红;李广敏;;渗透胁迫下玉米木质部汁液pH变化[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
2 孙国峰;张金政;石雷;唐宇丹;姚娟;;渗透胁迫对CAM植物——松塔景天幼苗保护酶及渗透调节物质的影响[A];2008北京奥运园林绿化的理论与实践[C];2009年
3 王荣华;石雷;汤庚国;;渗透胁迫下蒙古冰草幼苗的生理反应[A];中国植物学会七十周年年会论文摘要汇编(1933—2003)[C];2003年
4 黄蔚;毕婷;孙卫宁;;旱稻中旱3号和IR29响应渗透胁迫的穗蛋白质组分析[A];第三届全国植物蛋白质组学大会摘要集[C];2010年
5 汪耀富;张瑞霞;靖军领;胡筱岚;;渗透胁迫下烤烟根和叶片中内源激素含量的变化[A];中国烟草学会2004年学术年会论文集[C];2004年
6 魏胜林;刘竞男;吴李君;余增亮;;甘草叶片腺体的发育和结构及分泌多糖对渗透胁迫的调节[A];2004中国植物生理生态学学术研讨会论文摘要汇编[C];2004年
7 许鸿源;周凤珏;杨美纯;周歧伟;黄春燕;;CC在渗透胁迫下对玉米幼苗叶片抗氧化酶的影响[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
8 杨剑平;王文平;;水杨酸诱导对渗透胁迫中玉米幼苗生理的影响[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
9 刘雅辉;凌腾芳;叶茂炳;徐朗莱;沈文飚;;血红素加氧酶/一氧化碳系统缓解渗透胁迫对小麦种子萌发的抑制[A];华东六省一市生物化学与分子生物学会2008年学术交流会论文摘要汇编[C];2008年
10 孙立平;李德全;;渗透胁迫下玉米根系热稳定蛋白的分离及信号物质对其调控作用研究[A];2004中国植物生理生态学学术研讨会论文摘要汇编[C];2004年
中国博士学位论文全文数据库 前10条
1 刘雅辉;血红素加氧酶/一氧化碳信号系统参与调控渗透胁迫下小麦种子的萌发以及幼苗的脱黄化[D];南京农业大学;2009年
2 舒烈波;水稻叶片响应干旱和渗透胁迫的蛋白质组学研究[D];华中农业大学;2010年
3 刘栓桃;小麦体细胞杂种渐渗系新品种山融3号渗透胁迫应答研究[D];山东大学;2009年
4 李杰;渗透胁迫信号传导关键基因的克隆及DREB1A基因对水稻的遗传转化[D];东北农业大学;2003年
5 刘怀攀;渗透胁迫下小麦幼苗体内多胺形态、定位与功能[D];南京农业大学;2004年
6 董玉芝;渗透胁迫下白花柽柳SSH文库构建及质膜水孔蛋白基因克隆[D];东北林业大学;2006年
7 李朔;小麦耐盐渐渗系山融3号根系盐胁迫转录组分析及相关基因功能研究[D];山东大学;2009年
8 刘惠芬;内蒙古中东部草原羊草(Leymus chinensis)种群分化的生态遗传分析[D];南开大学;2004年
9 张华;外源一氧化氮促进小麦种子萌发及其信号作用机制研究[D];南京农业大学;2005年
10 李虹;拟南芥OSR家族基因的表达模式分析及OSR2参与干旱胁迫反应的实验证据[D];中国农业大学;2005年
中国硕士学位论文全文数据库 前10条
1 缪应江;渗透胁迫诱导植物细胞积累ABA的机制研究[D];扬州大学;2003年
2 蔡勤安;渗透胁迫下白花柽柳抑制性消减文库的构建及表达序列标签(EST)分析[D];新疆农业大学;2005年
3 杜红阳;多胺浸种对玉米抗渗透胁迫能力的影响[D];河南农业大学;2009年
4 任永兵;拟南芥AtMYB50和AtMYB61转录因子在重金属,低磷与渗透胁迫响应中的功能研究[D];合肥工业大学;2010年
5 宋常英;合成及天然吸水材料吸水机理的研究[D];河北大学;2006年
6 徐艳;NO对渗透胁迫下梭梭种子萌发与幼苗生长的影响[D];内蒙古农业大学;2008年
7 田佳;拟南芥渗透胁迫应答基因的筛选及功能分析[D];东北农业大学;2008年
8 杨靓;野生大豆渗透胁迫早期应答基因GsPK、GsLRPK的筛选及克隆[D];东北农业大学;2008年
9 张志阳;Fluridone和Tungtate对渗透胁迫下喜树幼苗几项生理生化指标的影响[D];河南农业大学;2008年
10 程翠;小花棘豆内生真菌及其与幼苗抗性关系的研究[D];内蒙古农业大学;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978


{bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck体育下载}| {bckbet}| {bcksports}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bck官网}| {bck体育下载}| {bckbet}| {bcksports}| {bck官网}| {bck体育app}| {bck体育}| {bcksports}| {bck官网}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck体育}| {bcksports}| {bck官网}| {bck体育官网}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bck官网}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bcksports}| {bck官网}| {bck}| {bck体育官网}| {bcksports}| {bck体育下载}| {bck体育app}| {bckbet}|
{uc8}| {uc8体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐城}| {uc8彩票}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {uc8体育}| {UC体育}| {uc8老虎机}| {uc8老虎机}| {UC8娱乐}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8老虎机}| {uc8彩票}| {uc8}| {uc8体育}| {UC体育}| {uc8官网}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {uc8彩票}| {uc8}| {uc体育}| {UC体育}| {UC8娱乐城}| {uc8}| {UC体育}| {uc8官网}| {uc8老虎机}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}|