收藏本站

化学链燃烧的特性及应用研究

【摘要】:化学链燃烧(Chemical-Looping Combustion,CLC)作为一种新型的燃烧技术,具有可近零能耗捕集CO2的先天特性,还兼具NOx排放少和能源利用效率高的优点。目前,关于化学链燃烧的研究通常以火力发电为应用背景,大多是基于在900℃以上高温下工作的流化床反应器,并聚焦在载氧体的开发上,而针对化学链燃烧的反应特性的研究以及将其拓展应用到中低温领域的研究却鲜有报道。本文通过与催化燃烧的对比,系统地阐明了化学链燃烧的反应特性。作为一种为人熟知的燃烧技术,催化燃烧将燃料气体与助燃剂气体的气/气氧化还原反应转变为一个气/固异相催化反应,而化学链燃烧则借助于载氧体的作用,将其转变成两个可在不同的地点和不同的时刻独立进行的气/固氧化还原反应,即燃料气体与氧化态载氧体的氧化反应和助燃剂气体与还原态载氧体的还原反应。并且有别于催化燃烧在反应中空速保持不变,随着反应的进行,化学链燃烧的实质空速是不断增大的。进一步地,本文阐明了当燃料气体和助燃剂性气体被同时通入化学链燃烧反应器时,载氧体在直接参与化学链燃烧还原氧化(Redox)反应的同时,往往还具有一定的催化燃烧催化活性。本文通过特定的固定床反应器评价实验和O2滴定实验,研究了在有O2共存条件下基于CuO/Al2O3-20I和NiO/Al2O3-20I的CO燃烧反应。结果表明,CuO/Al2O3-20I上的CO燃烧反应以化学链燃烧机理为主,而NiO/Al2O3-20I上的CO燃烧反应以催化燃烧机理为主,并且NiO/Al2O3-20I的催化活性高于CuO/Al2O3-20I。本文还指出了有别于催化燃烧催化剂的反应性能主要取决于其活性组分颗粒表面的活性位数量,化学链燃烧载氧体的反应性能不仅与其活性组分颗粒表面的晶格氧数量有关,还很大程度上与活性组分颗粒里层的晶格氧有关,且存在一个特定的晶格氧的最大“取出”深度。本文通过特定的固定床反应器评价实验,研究了在氧化态CuO/SiO2-80M与H2的还原反应以及其还原态与O2的氧化反应中,气相反应物的转化率和载氧体的还原/氧化率随活性组分颗粒粒度的变化规律,从而测定了晶格氧的最大“取出”深度。进一步地,有别于催化燃烧催化剂的初期劣化现象,本文发现了在化学链燃烧Redox反应初期,新鲜载氧体存在明显的活化现象,且其活性组分颗粒会有一定程度的膨胀。CuO/Cu颗粒的Redox循环反应实验和反应前后颗粒粒度变化的金相显微镜表征实验结果表明,在化学链燃烧中,随着Redox反应次数的增加,在原本晶体结构较为完整的活性组分颗粒中,会逐渐形成反应气体和产物气体进出的“反应通道”,且伴随着活性组分颗粒尺寸的逐渐长大。而随着“反应通道”的逐渐发达,载氧体反应性能会逐渐变好并趋于稳定。进而,本文还阐明了有别于催化燃烧催化剂的反应性能通常会因活性组分分散度的下降而明显下降,对于化学链燃烧反应,在载氧体的活性组分颗粒的半径长大到晶格氧的最大“取出”深度之前,载氧体的团聚和烧结,即活性组分分散度的下降不会对其反应性能产生明显的影响。CuO/A12O3-20I载氧体的循环寿命研究结果表明,随着循环次数的增加,载氧体活性组分的分散度在不断下降,但其反应活性并未明显降低。进一步地,劣化了的CuO-NiO/Al2O3-80M载氧体的再生实验结果表明,由于晶格氧的最大“取出”深度可达十数微米,对于因粉化及团聚烧结而劣化的载氧体,往往可以采用机械研磨和造粒成型的方法来实现劣化载氧体的再生与循环利用;而对于活性组分颗粒粒度只有几纳米至几十纳米的催化剂,因团聚烧结而劣化后,往往不能采用上述方法进行再生与循环利用。基于上述化学链燃烧的特性,本文创新性地将基于中低温固定床反应器的化学链燃烧技术应用于转炉放散煤气的回收利用以及含NH3或NOX气体的净化等领域。针对钢铁行业转炉放散煤气的排放特点,将转炉放散煤气作为化学链燃烧的燃料气体,并利用过渡金属氧化物载氧体中大量的晶格氧的特性,可以将化学链燃烧应用到间歇排放、热值低且波动大的放散煤气的处理上,即在转炉放散时段和非放散时段分别将放散煤气和空气导入充填有Cu基载氧体的化学链燃烧反应器,以交替进行载氧体的还原和氧化反应过程,从而可以实现转炉放散煤气的安全清洁利用。基于此,在350℃、还原反应空速4000 h-1以及氧化反应空速159 h-1的条件下,对CuO/Al2O3-20I的Redox循环反应寿命的研究结果表明,在经历24000次循环(反应时间累计5600 h)后,CuO/Al2O3-20I仍保持良好的反应性能。通过将NH3当作化学链燃烧的燃料气体,并利用过渡金属氧化物载氧体的氧化态具有的适当的氧化能力这一特性,可以将化学链燃烧应用到具有高N2选择性的NH3深度脱除上,即在氧化态载氧体与NH3的还原反应中,氧化态载氧体被转化为还原态载氧体,而NH3被转化为N2和H2O;随后,还原态载氧体被空气氧化再生为氧化态载氧体。结果表明,在氧化态载氧体与NH3的还原反应中,CuO/Al2O3-10IP的NH3脱除反应活性明显高于MnO2/Al2O3-10IP 和 Fe2O3/Al2O3-10IP,其 T50和T90 分别为 215℃ 和 250℃,并且三种载氧体上的N2选择性均很高,即使温度提高至350℃,N2选择性仍均保持在95%以上;而当反应气氛中同时有O2存在时,由于分子氧过强的氧化性,会导致反应的N2选择性严重恶化,当反应温度提高至300℃以上时,N2选择性均降低至80%以下。为此,针对含低浓度NH3气体的净化,提出了基于变温吸附(TSA)和化学链燃烧相耦合的TSA-CLC新工艺,即将待净化气体先通入充填有吸附剂的吸附塔,NH3被吸附剂吸附并实现与O2的分离,然后再进行后续的NH3脱附、氧化态载氧体与NH3的还原反应以及还原态载氧体的氧化再生反应等过程。与常规的选择性催化氧化(SCO)或TSA-SCO工艺相比,该工艺具有N2选择性高、能耗低和污染物排放量少的特点。通过将NOx作为化学链燃烧的氧化剂气体,并利用过渡金属氧化物载氧体的还原态具有的还原能力,还可以将化学链燃烧应用于烟气脱硝上,即在还原态载氧体与NOx的氧化反应中,还原态载氧体被转化为氧化态载氧体,而NOx被转化为N2;随后,氧化态载氧体被还原性气体(如CO)再生为还原态载氧体。实验结果表明,基于还原态CuO/Al2O3-10IP和CO的NO脱硝反应包括化学链燃烧机理和催化机理,但是在整个实验温度区间(100~300℃),脱硝反应以化学链燃烧机理为主。对于燃气锅炉烟气模拟气的脱硝反应,相比于以C2H5OH、CH3OH、H2或NH3作还原气体,以CO作还原气体的脱硝性能明显更佳,空速为10000 h-1时的T90可低至125℃;而烟气中的O2则会降低CuO/Al2O3-10IP载氧体中的还原态铜物种的占比,从而恶化其脱硝反应性能。但是提高CO的添加浓度,使烟气中02过量系数λ略小于1.0,即可获得较高的NO转化率(≥ 90%)。进而,本文还研究了基于化学链燃烧原理的汽车尾气中NOx、CO和HC的协同脱除。结果表明,当λ略小于1.0时,仅用CuO/A12O3-10IP填充床虽然能实现CO的完全脱除,同时NO转化率也能达到90%,可是此时反应气氛中O2不足,导致C3H6脱除率较低。对此,本文验证了基于还原态NiO/Al2O3-10IP的C3H6水蒸重整反应和化学链燃烧脱硝反应,协同深度脱除CuO/Al2O3-10IP反应残留的NO和C3H6的技术路线,从而提出了基于CuO/Al2O3-10IP和NiO/Al2O3-10IP填充床反应器的汽车尾气中NOx、CO和HC的协同深度脱除新工艺。

下载App查看全文

(如何获取全文? 欢迎:、、)

支持CAJ、PDF文件格式


【相似文献】
中国期刊全文数据库 前17条
1 李媛;谢红艳;张俊涛;;化学链燃烧技术中载氧体的研究进展[J];广东化工;2017年14期
2 张帅;肖睿;李延兵;金保昇;;燃煤化学链燃烧技术的研究进展[J];热能动力工程;2017年04期
3 李媛;尹雪峰;张志磊;;负钛铜基载氧体在煤化学链燃烧中多环芳烃的生成[J];浙江大学学报(工学版);2016年02期
4 刘永卓;郭庆杰;田红景;;煤化学链转化技术研究进展[J];化工进展;2014年06期
5 李广龙;;化学链燃烧技术中载氧体的研究概述[J];山东化工;2013年02期
6 王国贤;王树众;罗明;;固体燃料化学链燃烧技术的研究进展[J];化工进展;2010年08期
7 秦翠娟;沈来宏;肖军;高正平;;化学链燃烧技术的研究进展[J];锅炉技术;2008年05期
8 段慧维;张建民;陈磊;屈星星;林洁;;化学链燃烧技术的研究现状[J];山西能源与节能;2007年01期
9 沈来宏;;化学链技术进展[J];国际学术动态;2017年04期
10 付甜甜;玉散·吐拉甫;王邑维;伍永明;张静;王伟;;镍修饰的铁基载氧体甲烷化学链制氢实验[J];燃烧科学与技术;2020年02期
11 本刊编辑部;;第一届中国化学链会议[J];石油学报(石油加工);2019年06期
12 张秀丽;郑晓明;;一种天然气化学链燃烧新工艺[J];广东化工;2017年15期
13 杨杰;马丽萍;唐剑骁;朱斌;连艳;刘红盼;马贵鹏;;化学链燃烧国内外研究发展现状[J];现代化工;2016年01期
14 王坤;张利;徐元孚;王梓越;王建;;国内化学链燃烧技术研究进展[J];能源与节能;2016年06期
15 M'BOUNANA Noé-Landry-Privace;王帅;杨运超;CAMARA Namory;陆慧林;;耦合反应器中化学链燃烧的模拟[J];工程热物理学报;2014年07期
16 魏国强;何方;黄振;赵坤;李新爱;李海滨;;化学链燃烧技术的研究进展[J];化工进展;2012年04期
17 王保文;赵海波;郑瑛;柳朝晖;郑楚光;;煤化学链燃烧技术的研究进展[J];动力工程学报;2011年07期
中国重要会议论文全文数据库 前10条
1 沈来宏;;化学链技术的进展和展望[A];第三届能源转化化学与技术研讨会摘要集[C];2018年
2 郭庆杰;安梅;马晶晶;胡修德;;化学链在煤炭转化领域的应用进展[A];第三届能源转化化学与技术研讨会摘要集[C];2018年
3 张志丰;王亦飞;朱龙雏;李季林;王辅臣;于广锁;;基于Fe_2O_3/Al_2O_3载氧体的高硫煤化学链燃烧过程中S分布特性[A];第三届能源转化化学与技术研讨会摘要集[C];2018年
4 李振山;韩海锦;蔡宁生;;化学链燃烧研究现状及进展[A];中国动力工程学会第三届青年学术年会论文集[C];2005年
5 姜旭;王翠苹;徐承浩;狄海生;;CaSO_4为载氧体的煤化学链燃烧流动反应数值模拟[A];高等学校工程热物理第十九届全国学术会议论文集[C];2013年
6 曾亮;孙敬泽;巩金龙;;双金属氧化物在化学链制氢过程中的应用[A];第二届能源转化化学与技术研讨会会议指南2015[C];2015年
7 郭庆杰;刘永卓;田红景;王许云;;化学链过程载氧体颗粒研究进展[A];中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会论文集[C];2010年
8 田红景;郭庆杰;;基于CaSO_4的复合型载氧体在化学链燃烧系统中的应用[A];中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集(上)[C];2008年
9 余钟亮;李春玉;胡顺轩;周兴;赵建涛;黄戒介;房倚天;;基于碱金属修饰铁铝复合氧载体的煤直接化学链气化制氢技术[A];第十八届中国科协年会——分8 煤化工精细化发展论坛论文集[C];2016年
10 黄振;何方;赵坤;李海滨;;赤铁矿用于生物质化学链气化氧载体的反应性能[A];全国农村清洁能源与低碳技术学术研讨会论文集[C];2011年
中国博士学位论文全文数据库 前10条
1 武永健;化学链燃烧的特性及应用研究[D];北京科技大学;2019年
2 刘桂才;生物质化学链气化特性及Ca_2Fe_2O_5载氧体改性优化研究[D];华南理工大学;2019年
3 潘腾;化学链方法分解氯化铵和硫酸铵的研究[D];浙江大学;2019年
4 冯于川;化学链重整制氢技术中镍基及铁基载氧体的反应性及其机理研究[D];华中科技大学;2019年
5 曾德望;基于化学链氧传递的铁基纳米储氢材料的制备及其储氢性能研究[D];东南大学;2019年
6 张浩;太阳能驱动化学链循环的固体燃料蓄能转化机理及实验研究[D];中国科学院大学(中国科学院工程热物理研究所);2018年
7 花秀宁;生物质废物热解气深度还原化学链制氢工艺及其机理研究[D];清华大学;2017年
8 王训;铁基氧载体生物质化学链技术研究[D];华中科技大学;2018年
9 范峻铭;化石燃料化学链燃烧能量系统评价方法与全生命周期研究[D];中国科学院大学(中国科学院工程热物理研究所);2019年
10 徐雷;基于铜/锰氧化物的化学链燃烧载氧体制备与特性研究[D];清华大学;2016年
中国硕士学位论文全文数据库 前10条
1 李波;直接球磨法制备铈基载氧体用于甲烷化学链重整反应研究[D];西北大学;2019年
2 高杰琦;集成化学链燃烧的MSSAQ法制浆过程概念设计及其水热集成优化[D];华南理工大学;2019年
3 孙雁宇;基于Aspen Plus的化学链燃烧系统模拟研究[D];华北电力大学;2019年
4 巩建;化学链热解液烃燃料制备炭黑的实验研究与数值模拟[D];青岛大学;2019年
5 李彦坤;煤化学链气化过程中氮元素的释放迁移行为[D];宁夏大学;2019年
6 易旸;煤中硫在化学链燃烧过程中的迁移转化规律及脱除机制研究[D];江苏大学;2019年
7 王旭锋;基于CoFe_2O_4载氧体的生物质化学链气化研究[D];华中科技大学;2019年
8 洪瑜武;化学链燃煤电站的战略研究与动态技术经济性分析[D];华中科技大学;2019年
9 王一迪;化学链产氢还原阶段Fe_2O_3动力学研究[D];中国石油大学(华东);2017年
10 卓纳思(Jonas Hilario);生物乙醇吸附增强式化学链重整制氢:反应器建模与过程模拟[D];天津大学;2018年
中国重要报纸全文数据库 前1条
1 记者 刘万生 通讯员 黄传德 林坚;[N];中国科学报;2018年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978


{bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bcksports}| {bck体育下载}| {bckbet}| {bcksports}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bck官网}| {bck体育下载}| {bckbet}| {bcksports}| {bck官网}| {bck体育app}| {bck体育}| {bcksports}| {bck官网}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck官网}| {bck体育}| {bcksports}| {bck官网}| {bck体育官网}| {bck体育下载}| {bck体育}| {bckbet}| {bcksports}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bck体育}| {bckbet}| {bck官网}| {bck}| {bck体育官网}| {bck体育下载}| {bck体育app}| {bcksports}| {bck官网}| {bck}| {bck体育官网}| {bcksports}| {bck体育下载}| {bck体育app}| {bckbet}|
{uc8}| {uc8体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐城}| {uc8彩票}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {uc8体育}| {UC体育}| {uc8老虎机}| {uc8老虎机}| {UC8娱乐}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8老虎机}| {uc8彩票}| {uc8}| {uc8体育}| {UC体育}| {uc8官网}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {uc8彩票}| {uc8}| {uc体育}| {UC体育}| {UC8娱乐城}| {uc8}| {UC体育}| {uc8官网}| {uc8老虎机}| {uc8}| {uc体育}| {uc8体育}| {UC体育}| {uc8官网}| {uc8老虎机}| {UC8娱乐}| {UC8娱乐城}|